Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
نویسندگان
چکیده
منابع مشابه
Learning Representations for Counterfactual Inference
Observational studies are rising in importance due to the widespread accumulation of data in fields such as healthcare, education, employment and ecology. We consider the task of answering counterfactual questions such as, “Would this patient have lower blood sugar had she received a different medication?”. We propose a new algorithmic framework for counterfactual inference which brings togethe...
متن کاملImplicit dose-response curves.
We develop tools from computational algebraic geometry for the study of steady state features of autonomous polynomial dynamical systems via elimination of variables. In particular, we obtain nontrivial bounds for the steady state concentration of a given species in biochemical reaction networks with mass-action kinetics. This species is understood as the output of the network and we thus bound...
متن کاملEstimating the hidden learning representations.
Successful adaptation relies on the ability to learn the consequence of our actions in different environments. However, understanding the neural bases of this ability still represents one of the great challenges of system neuroscience. In fact, the neuronal plasticity changes occurring during learning cannot be fully controlled experimentally and their evolution is hidden. Our approach is to pr...
متن کاملEstimating the Counterfactual
Time lags in receiving data from long-standing, large federal surveys complicate real-time estimation of the coverage effects of full Affordable Care Act (ACA) implementation. Fast-turnaround household surveys fill some of the void in data on recent changes to insurance coverage, but they lack the historical data that allow analysts to account for trends that predate the ACA, economic fluctuati...
متن کاملLearning Invariant Representations Of Planar Curves
We propose a metric learning framework for the construction of invariant geometric functions of planar curves for the Euclidean and Similarity group of transformations. We leverage on the representational power of convolutional neural networks to compute these geometric quantities. In comparison with axiomatic constructions, we show that the invariants approximated by the learning architectures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.6014